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Lagrangian stochastic models for turbulent
relative dispersion based on particle pair rotation
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The physical picture of a fluid particle pair as a couple of material points rotating
around their centre of mass is proposed to model turbulent relative dispersion in the
inertial range. This scheme is used to constrain the non-uniqueness problem associated
to the Lagrangian models in the well-mixed class and the properties of the stochastic
process derived are analysed with respect to some turbulent velocity characteristics.
A simple illustrative Markov model is developed in stationary homogeneous isotropic
turbulence and the particle separation statistics are compared with direct numerical
simulation data. In spite of the simplicity of the model, a consistent comparison is
observed in the inertial range, supporting the formulation proposed.

1. Introduction
The strong efficiency of turbulent mixing makes turbulent dispersion important

in environmental problems and also fundamental to understanding the nature of
turbulence.

In particular, the relative dispersion between two fluid particles can be seen as the
Lagrangian counterpart of the two-point velocity difference in the Eulerian theory
and the results of the Eulerian theory can be applied directly, i.e. in terms of the
two-point separation without any adjustment or additional assumptions. However,
two-particle dispersion is not determined by Eulerian two-point statistics alone, since
also Lagrangian time scales have an influence on the process.

At infinite Reynolds numbers, the particle acceleration can be considered local in
time and space and thus, in the inertial range, an uncorrelated random forcing can
be assumed (see Monin & Yaglom 1975, pp. 370–371, Borgas & Sawford 1991). This
suggests the suitability of modelling turbulent dispersion as a first-order Markov
process, even if the Markovian assumption cannot be derived from the equations
of motion. Markovianity can be assumed for the relative dispersion, too. Turbulent
relative dispersion with particular attention to its stochastic modelling is reviewed by
Sawford (2001).

A valid application of the stochastic-model approach for describing Lagrangian
statistics in turbulent flow can be found in Borgas & Yeung (2004). These authors
show that stochastic models, when properly formulated, are efficient representations of
the turbulent dispersion process. Moreover, in the viscous range, where the Markovian
assumption is unphysical, non-Markovian corrections can be introduced (see Heppe
1998).
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As shown by Sawford & Borgas (1994), a description of the turbulent dispersion
consistent with the Kolmogorov theory (K41) (Monin & Yaglom 1971, 1975)
requires the stochastic process to be continuous, i.e. it requires the formalism of
the Langevin and Fokker–Planck equations (see Risken 1989; Gardiner 1990). Here,
three-dimensional stationary homogeneous isotropic turbulence is considered. Let
r(t) = r (1)(t) − r (2)(t) and u(t) = u(1)(t) − u(2)(t) be the three-dimensional particle
separation and velocity difference vectors at time t , respectively. Then, the relative
motion between two fluid particles is described by the stochastic differential equations

dr = u dt, du = a dt +
√

2C0ε dW , (1.1a, b)

where a = a(u, r, t) is the drift term,
√

2C0ε is the noise amplitude and dW is a
Wiener process with zero mean and variance dt , 〈dWi(t) dWj (s)〉 = δij dtδ(t − s). The
noise amplitude is chosen consistently with the second-order Lagrangian structure
function in K41, i.e. SL = 〈(u(j )

i (0) − u
(j )
i (t))2〉 = C0εt , j = 1, 2, i = 1, 2, 3, where C0

is a universal constant and ε the mean rate of turbulent kinetic energy dissipation.
From the theory of stochastic methods, it is known that the Lagrangian probability
density function (PDF) pL(u, r; t |r0) evolves according to the Fokker–Planck equation
(Risken 1989; Gardiner 1990)

∂pL

∂t
= − ∂

∂ri

(uipL)− ∂

∂ui

(aipL) + C0ε
∂2pL

∂ui∂ui

. (1.2)

In order to derive an exact, statistically founded, formulation, Thomson (1987)
defined the constraint called the well-mixed condition which recovers the important
physical requirement that the Eulerian and Lagrangian statistics generated by the
model must be consistent, e.g. if an initially well-mixed scalar field (for constant density
flows) is considered, the Lagrangian evolution of the process does not produce mean
concentration gradient or concentration fluctuations. This constraint was subsequently
applied also in relative dispersion (Thomson 1990). A similar work was published by
Novikov (1986). The well-mixed condition is derived by applying to the Fokker–Planck
equation (1.2) the following Thomson–Novikov formula (Novikov 1986; Thomson
1987)

pE(u; t |r) =

∫
pL(u, r; t |r0) dr0, (1.3)

with the initial condition pL(u, r; 0|r0) = δ(r − r0)pE(u; 0|r). As a consequence, the
following determination of the drift term is obtained

ai pE = C0ε
∂pE

∂ui

+ Φi,
∂Φi

∂ui

= −∂pE

∂t
− ∂uipE

∂ri

, (1.4)

where pE is the Eulerian PDF and |Φ| → 0 when |u| → ∞.
However, for a given Eulerian PDF, the drift coefficient a defined in (1.4) is

determined up to an additive term with zero divergence with respect to u. This
drift indetermination, also referred to as the non-uniqueness problem, motivates the
present paper. Here, a consistent formalism without indetermination is derived in
the well-mixed approach, uniquely relating the drift term with a kinematical formula
for relative acceleration, under the Markovian assumption. In particular, the derived
closure uses the fact that turbulent flows are rotational.

This paper describes a Lagrangian stochastic model for the relative dispersion of
particle pairs in stationary isotropic turbulence. The key idea is to treat the fluid
particle pair as a couple of material points rotating around their centre of mass for
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turbulent relative dispersion when the particle separation falls in the inertial range.
Since in the centre-of-mass reference frame the particles move only radially, it is
possible to derive formulae for relative velocity and relative acceleration, thereby
constraining the non-uniqueness problem.

The remainder of the paper is organized as follows. In § 2, a literature survey of
the non-uniqueness problem is given, and in § 3 a closure for Lagrangian stochastic
models of turbulent relative dispersion is proposed. In § 4, the properties of the new
closure are investigated with respect to some fundamental aspects of fluid dynamics.
In § 5, a Markovian model is formulated and compared first with data obtained from
the direct numerical simulation (DNS) by Biferale et al. (2005) and later with other
models. Finally, in § 6, the results are discussed and the conclusions are given.

2. Background to the non-uniqueness problem
In one-particle models, the non-uniqueness problem is solved in homogeneous and

isotropic turbulence or in the one-dimensional case, while in two-particle models the
non-uniqueness remains in the multidimensional case even in a steady homogeneous
isotropic flow (Borgas & Sawford 1994). This indetermination arises because (1.3)
defines a purely statistical condition and the Eulerian PDF alone does not include all
the dynamical contents of the physical process.

This indetermination is a relevant problem in the improvement of Lagrangian
stochastic models because solutions to (1.4) differ strongly (Borgas & Sawford 1994;
Borgas, Flesch & Sawford 1997). In absolute dispersion, several selection criteria have
been proposed. For example, the rotation of the particle trajectories (Wilson & Flesch
1997; Reynolds 1998, 1999a; Sawford 1999), the correspondence with the second-
moment closures of the Reynolds-stress and scalar-flux equations (Reynolds 2002),
and also the ability to represent DNS statistics was tested as a discriminator between
models (Sawford & Yeung 2000, 2001). However, none of the above criteria is sufficient
to define a unique model yet.

In relative dispersion, the optimal reduction to the known one-particle statistics was
adopted as a selection criterion, the so-called two-to-one reduction (Borgas & Sawford
1994). However, these statistics are not adequately modelled by every model (Thomson
1990). An alternative to the non-unique well-mixed approach, which requires also the
choice of an Eulerian PDF, is the moments approximation method (Kaplan &
Dinar 1993). With the moments approximation method, the non-uniqueness problem
is solved operationally by choosing a polynomial form for the drift term whose
coefficients are determined by imposing the consistency with some Eulerian statistical
moments (Pedrizzetti & Novikov 1994; Heppe 1998; Pedrizzetti 1999). However,
stochastic models based on the moments approximation approach in general do not
satisfy the well-mixed condition (Du, Wilson & Yee 1994). A more conclusive result
is desirable.

Kurbanmuradov & Sabelfeld (1995) introduced a new approach. They considered
isotropic turbulence where the relative dispersion is spatially characterized only by
the modulus of the particle separation r = (r · r)1/2 and subsequently rewrote the well-
mixed models in the spherical reference frame defined by r . This reference system
is the natural one for applying the two-point Eulerian theory (Monin & Yaglom
1975) in relative dispersion, in fact the line joining the two points is r . This spherical
reference frame was used for absolute dispersion models in two and three dimensions
(Flesch & Wilson 1992; Monti & Leuzzi 1996). The new reference frame is defined
by the change of variables {u} → {u‖, u′⊥, u′′⊥} → {u‖, u⊥, α} where u‖ = u · r/r ,
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u2
⊥ = u · u − u2

‖ and α ∈ [0; 2π] is a uniformly distributed angle. In this frame,

the two-to-one reduction is meaningless. In the new reference frame, the stochastic
equations of the relative motion between two fluid particles become

dr = u‖ dt, du‖ = χ‖ dt +
√

2C0ε dW‖, du⊥ = χ⊥ dt +
√

2C0ε dW⊥, (2.1a–c)

where the drift term indeterminacy remains.
This indeterminacy can be avoided by choosing to develop a stochastic process

for {r, u‖}, where essentially an average is taken over u⊥ (see Sawford, Yeung &
Borgas 2005; Sawford 2006). However, Kurbanmuradov (1997) proposed to solve
the indeterminacy assuming that the longitudinal drift term χ‖ depends solely on
the longitudinal component of the velocity and not on the orthogonal ones: χ‖ =
χ‖(u‖, r, t); here, this is called quasi-one-dimensional assumption. This assumption
implies considering only the first two equations in (2.1a–c) and the formal reduction
to a one-dimensional problem. Subsequently, the quasi-one-dimensional approach
developed by Kurbanmuradov (1997) was applied by him and collaborators (Sabelfeld
& Kurbanmuradov 1997, 1998; Kurbanmuradov et al. 1997, 2001) and by others
(Borgas & Yeung 1998, 2004; Reynolds 1999b, Franzese & Borgas 2002). However,
this class of models shows a high rate of separation (Kurbanmuradov et al. 2001)
and a new closure is required. In the next section, a new closure is proposed starting
from the fact that rotation reduces the dispersion (Borgas et al. 1997).

3. A closure for Lagrangian stochastic models of turbulent relative dispersion
3.1. Lagrangian relative kinematics

Turbulent flows are characterized by high levels of fluctuating vorticity and this plays
a key role in turbulent dynamics (see Tennekes & Lumley 1972). In order to describe
relative dispersion, the importance of particle rotation must be kept in mind. The
simple physical picture of a fluid particle pair as a couple of material points rotating
around their centre of mass is proposed when the particle separation falls in the
inertial range. Since in the centre-of-mass reference frame the particles move only
radially, it is possible to derive formulae for relative velocity and relative acceleration,
thereby constraining the non-uniqueness problem.

The Lagrangian relative velocity can be written as, see Appendix A,

u = u‖
r
r

+ Ω × r, (3.1)

where

Ω =
1

r2
(r × u). (3.2)

In the chosen physical picture, the orientation and the value of the angular velocity
vector Ω (3.2) depend, at all times, on the particle separation and their velocity
difference.

In decomposition (3.1), no strain-rate term appears because Lagrangian quantities
are considered; the Helmholtz theorem for the decomposition of a vector field
as the sum of an irrotational vector and a solenoidal vector holds for space-
dependent vectors only, e.g. the Eulerian velocity field (Narasimhan 1993, p. 186).
Furthermore, in the determination of the angular velocity Ω , no gauge invariants
occur in (3.1)–(3.2), since in this particular case, the rotation axis is perpendicular to
the separation line (Ω ⊥ r); as discussed in Appendix A. The unit mass angular
and inertial momenta of each particle with respect to the centre of mass are
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M (i) = (r×u)/4 and I (i) = (r/2)2, respectively, and the modulus of the angular velocity
vector Ω = u⊥/r .

The Lagrangian relative acceleration is defined as A = du/dt = A(1) − A(2) where
A(i) = du(i)/dt , and its most general form, when (3.1) holds, is

A = α1

r
r

+ α2(Ω × r) + α3(r × (Ω × r)). (3.3)

Taking the time derivative of (3.1) gives

A =
du
dt

=

(
A‖ +

u2
⊥
r

)
r
r

+ Ω × u +
u‖

r
u −

u2
‖

r

r
r

+ Ω̇ × r, (3.4)

where

du‖

dt
=

d

dt

uiri

r
=

(Airi + uiui)r − uiriu‖

r2
= A‖ +

u2
⊥
r

, A‖ =
Airi

r
,

and Ω̇ = dΩ/dt . In the present case, from (3.2) Ω̇ is

Ω̇ =
1

r2

[
(r × A)− 2

u‖

r
(r × u)

]
.

Since Ω̇ substituted into (3.4) gives the identity A = A, no constraint can be obtained
for the coefficients {α1, α2, α3}. Using (3.2), formula (3.3) can be rearranged as

A = (α1 − α2u‖)
r
r

+ α2u + α3r
2Ω. (3.5)

The kinematic formula (3.5) will be related to the drift term of the stochastic model
and the coefficients determined from symmetries and properties of the statistical
description so that a closure for the non-uniqueness problem is obtained.

Li & Meneveau (2005, 2006) discussed the determination of du‖/dt and du⊥/dt

starting from the linear approximation ui(x + r) − ui(x) = Akirk , where Aki , the
velocity gradient tensor Aki = ∂uk/∂xi , is considered constant across a fixed length 	.
In fact, they derived the so called ‘advected delta-vee’ system of equations for du‖/dt

and du⊥/dt , which is useful for the computation of A (3.5). However, in the present
paper, the Lagrangian acceleration is determined in the framework of the well-mixed
approach. Nevertheless, one of their results will be used in the next section to support
the closure derived here.

3.2. Particle pair rotation and stochastic models

As pointed out by Kurbanmuradov (1997), in isotropic turbulence, the drift term ai

in Cartesian coordinates has the following general form

ai(u‖, u⊥, r, t) = ϕ(u‖, u⊥, r, t)
ri

r
+ ψ(u‖, u⊥, r, t)

ui

u
, (3.6)

where ϕ and ψ are two unknown scalar functions.
The drift terms in Cartesian and spherical coordinates are related to each other as

follows (Risken 1989):

χ‖(u‖, u⊥, r, t) = a‖ +
u2
⊥
r

(3.7)

= ϕ + ψ
u‖

u
+

u2
⊥
r

, (3.8)
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χ⊥(u‖, u⊥, r, t) =
uiai − u‖a‖

u⊥
−

u‖u⊥

r
+

C0ε

u⊥
(3.9)

= ψ
u⊥

u
−

u‖u⊥

r
+

C0ε

u⊥
. (3.10)

From (3.8) and (3.10), the following expressions for ϕ and ψ are found:

ϕ = χ‖ −
u‖

u⊥
χ⊥ −

u2

r
+

u‖

u⊥

C0ε

u⊥
, (3.11)

ψ =
u

u⊥
χ⊥ +

uu‖

r
− u

u⊥

C0ε

u⊥
. (3.12)

Substitution of (3.11)–(3.12) into (3.6) yields

ai = χ‖
ri

r
+

1

u⊥

(
ui − u‖

ri

r

)(
χ⊥ −

C0ε

u⊥

)
− u2

r2
ri +

u‖

r
ui, (3.13)

and in vector form

a = χ‖
r
r

+
1

u⊥

(
u − u‖

r
r

)(
χ⊥ −

C0ε

u⊥

)
+ Ω × u, (3.14)

where the angular velocity Ω is defined in (3.2). For the noise dW , a representation
of the type of (3.6) cannot be given because a Markovian noise is not a function of r
or u. However, keeping in mind that in the chosen reference frame the motion is only
radial with respect to the centre of mass, the noise can be explicitly considered in
the longitudinal direction while in the transverse direction it is implicitly taken into
account with the dependence of the drift term on the stochastic variable u⊥. Finally,
considering also that the noise is not affected by the variables changing (Risken 1989,
pp. 57–58, 88–91),

dW =

(
dW · r

r

)
r
r

= dW‖
r
r
. (3.15)

Hence, considering that

A dt = a dt +
√

2C0ε dW (3.16)

formally holds (1.1a, b), (3.4), substitution of (3.6) and (3.15) into (3.16) gives

A dt = (ϕ dt +
√

2C0ε dW‖)
r
r

+ ψ
u
u

dt. (3.17)

Now, comparing (3.17) and (3.5), the coefficients α2 and α3 are determined as α2 = ψ/u

and α3 = 0. Furthermore, the above definition of A‖ gives

α1 dt = A‖ dt = a‖ dt +
√

2C0ε dW‖,

so that α1 includes all the effects of the stochastic noise. From comparison of (3.17)
and (3.5) the following equation is obtained for ϕ:

ϕ = a‖ − α2u‖. (3.18)

Substitution in (3.18) of ϕ with (3.11) and of a‖ with (3.7) gives

u‖

u⊥

(
χ⊥ −

C0ε

u⊥

)
+

u2

r
=

u2
⊥
r

+ α2u‖. (3.19)

From (3.15) and arguments above it, the effects of the stochastic noise are only along
the r/r direction. Therefore, α2 appears to be independent of C0ε because it is the
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coefficient in the (Ω×r)/|Ω×r | direction. This means that χ⊥ = C0ε/u⊥+f (u‖, u⊥, r).
The system of stochastic equations (2.1a–c) gives the evolution in time of {u‖, u⊥, r}
with Lagrangian probability density function pL(u‖, u⊥, r; t |r0). This PDF can be
composed by the product pL(u‖, r; t |u⊥, r0)p(u⊥; t |r0) and from this, in stationary
turbulence, it is statistically sound to have χ⊥ = χ⊥(u⊥, r). From dimensional analysis,
χ⊥ assumes the form

χ⊥ =
C0ε

u⊥
+ k

u2
⊥
r

,

where k is a dimensionless real number which has to be determined. However, for
numerical stability, k must be zero. In fact, when u⊥ tends to 0 or +∞, the limits of
χ⊥ with k �= 0 are

u⊥ → 0, χ⊥ → +∞,

u⊥ → +∞, χ⊥ → sgn(k)∞,

and with k = 0

u⊥ → 0, χ⊥ → +∞,

u⊥ → +∞, χ⊥ → 0.

Finally, χ⊥ is given by

χ⊥ =
C0ε

u⊥
, (3.20)

and therefore α2 = u‖/r . With the three coefficients now determined as α1 = A‖,
α2 = u‖/r , α3 = 0, (3.3) becomes

A =

(
A‖ +

u2
⊥
r

)
r
r
− u2

r

r
r

+
u‖

r
u, (3.21)

and in Cartesian components

Ai =

(
A‖ +

u2
⊥
r

)
ri

r
− u2

r

ri

r
+

u‖

r
ui. (3.22)

Furthermore, (3.21) can be rearranged as

A =

(
A‖ +

u2
⊥
r

)
r
r

+ Ω × u, (3.23)

which gives an identity when substituted into (3.4) (see Appendix B). Equation (3.23)
is the solution of (3.4) combined with the stochastic model formulae (3.14) and (3.20).

Note that (2.7) in Li & Menevau (2006) is obtained from the above solution (3.23)
when substituting r = 	 and changing the sign of α2. This change of sign means that
the growth direction of the (Ω × r)/|Ω × r | axis is inverted (3.3).

The physical picture described above selects a unique model in the well-mixed class,
and thereby solves the drift indeterminacy. In fact, applying (1.3) in the new reference
frame to the Fokker–Planck equation associated to (2.1a–c), and using (3.20), the
following equation is obtained (Pagnini 2005):

∂pE

∂t
+

1

r2

∂

∂r
(r2u‖pE) +

∂

∂u‖
(χ‖pE) = C0ε

[
∂2pE

∂u2
‖

+
1

u⊥

∂

∂u⊥

(
u⊥

∂pE

∂u⊥

)]
, (3.24)
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with the normalization condition

2π

∫ +∞

−∞
du‖

∫ +∞

0

du⊥u⊥pE(u‖, u⊥; t |r) = 1.

Integrating (3.24) in u‖ ∈] −∞; u‖], the second drift term χ‖ is uniquely determined
by

χ‖ = C0ε
1

pE

∂pE

∂u‖
− 1

pE

Ψ (u‖, u⊥, r, t), (3.25)

where

Ψ =

∫ u‖

−∞

{
∂pE

∂t
+

1

r2

∂

∂r
(r2u′‖pE)− C0ε

u⊥

∂

∂u⊥

(
u⊥

∂pE

∂u⊥

)}
du′‖, (3.26)

with the general assumptions

χ‖pE → 0,
∂pE

∂u‖
→ 0, |u‖| → ∞.

Equation (3.25) shows the dependence of the longitudinal drift χ‖ on u⊥, which
is different from the longitudinal drift obtained from the quasi-one-dimensional
assumption by Kurbanmuradov (1997).

The relative motion between two particles turns out to be described by the stochastic
differential equations

dr = u‖ dt, du‖ = χ‖ dt +
√

2C0ε dW‖, du⊥ =
C0ε

u⊥
dt +

√
2C0ε dW⊥, (3.27a–c)

where χ‖ is defined in (3.25)–(3.26). From (3.11)–(3.12), the two unknown functions ϕ

and ψ (3.6) are

ϕ = χ‖ −
u2

r
, ψ =

uu‖

r
. (3.28)

Mathematically, the multidimensional models are not closed because, for a given
Eulerian PDF, there are two unknown functions (ϕ, ψ) and only one constraint,
i.e. the Fokker–Planck equation. In the present approach, there are two unknown
functions (χ‖, χ⊥), or equivalently (ϕ, ψ), and two constraints, i.e. (3.20) and the
evolution equation (3.24).

4. Physical aspects of the closure proposed
4.1. Compatibility with the Navier–Stokes equations

Since the stochastic models formulation proposed includes the statistical dependence
between the longitudinal and the orthogonal components of the velocity difference
vector, it is consistent with a fundamental aspect of Navier–Stokes dynamics. On
the contrary, the models formulated with the quasi-one-dimensional assumption
are inconsistent with this fundamental aspect of Navier–Stokes equations because
that assumption is based on the statistical independence of the velocity difference
components. The same fundamental inconsistency with Navier–Stokes equations
occurs for Gaussian models formulated in Cartesian coordinates (Thomson 1990;
Borgas & Sawford 1994) because they are based on the covariance matrix of velocity
difference that reduces to a diagonal matrix (i.e. statistical independence of velocity
difference components) when the present reference frame is adopted.

In stationary isotropic turbulence, one of the few exact results of the Navier–Stokes
equations is the so-called 4/5 law that affirms (see Monin & Yaglom 1975; Frisch
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1996)

〈u3
‖〉 = − 4

5
εr. (4.1)

The two perpendicular components u′⊥ and u′′⊥ are such that u2
⊥ = u′2⊥+u′′2⊥ and 〈u2

⊥〉 =
2〈u′2⊥〉 = 2〈u′′2⊥ 〉 , then for a solenoidal isotropic field (see Monin & Yaglom 1975,
p. 107, Frisch 1996)

1
2
〈u‖u2

⊥〉 = 〈u‖u′2⊥〉 = 1
6

[
〈u3
‖〉+ r

∂〈u3
‖〉

∂r

]
= − 4

15
εr, (4.2)

and for each Cartesian component

〈uiujuk〉 = − 4
15

ε(riδjk + rj δik + rkδij ). (4.3)

The exact result (4.2) shows that the components of the velocity difference are not
statistically independent, as a consequence the Eulerian PDF cannot be factorized.
This result is of fundamental importance in turbulent dynamics. In fact, the moment
of the third order represents the energy transport between the motions of various
scales, and this is a major feature of turbulent flow (Novikov 1989). This strong
physical constraint arises naturally in the formulation derived here. In fact, in the
stationary case (∂pE/∂t = 0) integrating (3.24) in u‖ ∈ ]−∞; +∞[ with weight 2π gives

1

r2

∂

∂r
(r2〈u‖|u⊥〉p⊥) =

C0ε

u⊥

∂

∂u⊥

(
u⊥

∂p⊥

∂u⊥

)
, (4.4)

where p⊥ is the marginal PDF of u⊥ (p⊥ = pE(u⊥) = 2π
∫

pE du‖) and 〈u‖|u⊥〉 is the
conditional mean defined as

〈u‖|u⊥〉 = 2π

∫ ∞

−∞
u‖pE(u‖|u⊥) du‖, pE(u‖|u⊥) =

pE(u‖, u⊥)

pE(u⊥)
.

Then, if the Eulerian PDF can be factorized, the equalities 〈u‖|u⊥〉 = 〈u‖〉 = 0 hold
and (4.4) becomes

u2
⊥

∂2p⊥

∂u2
⊥

+ u⊥
∂p⊥

∂u⊥
= 0, (4.5)

after multiplication by u2
⊥. However, it is well known that for a function h(ξ ), ξ ∈ R+,

the following Mellin transform rule holds (Sneddon 1972, p. 268)

ξ 2 ∂2h

∂ξ 2
+ ξ

∂h

∂ξ

M←→ s2h∗(s), (4.6)

hence (4.5) is solved, in the s space, by

s2p∗⊥(s) = 0. (4.7)

From (4.7), it is clear that there is no non-trivial solution to (4.5). This proves that
in this closure scheme, the choice of a factorizable Eulerian PDF of the velocity
difference is not permitted in the inertial range. However, in § 4.4, it will be shown
that in the small-length-scale limit and spatial decorrelated velocity field, a Gaussian
Eulerian PDF is recovered.

This result makes the approach derived here strongly different from the other ones.
In fact, in the quasi-one-dimensional approach (Kurbanmuradov 1997), the Eulerian
statistics generated by the model are consistent with a factorizable Eulerian PDF.
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From the stochastic differential equations (2.1a–c), with the quasi-one-dimensional
assumption χ‖ = χ‖(u‖, r, t), it follows that the Lagrangian statistics of u‖ are
independent of u⊥ and then in terms of PDF

pL(u‖, u⊥, r; t |r0) = pL(u‖, r; t |r0)p(u⊥),

where p(u⊥) is an undetermined function and depends exclusively on u⊥, as a
consequence of the assumption that {r, u‖} are independent of u⊥. From (1.3), the
Eulerian PDF is

pE(u‖, u⊥; t |r) =

∫
pL(u‖, u⊥, r; t |r0)

r2
0

r2
dr0

= p(u⊥)

∫
pL(u‖, r; t |r0)

r2
0

r2
dr0

= p(u⊥)pE(u‖; t |r).
Now, formula pE(u‖, u⊥; t |r) = pE(u⊥; t |r, u‖)pE(u‖; t |r) implies pE(u⊥; t |r, u‖) =
p(u⊥) = pE(u⊥). As pointed out in (4.2), this statistical independence is in contrast with
the Navier–Stokes equations. Moreover, the fact that u‖ is statistically independent
of u⊥, as follows directly from the quasi-one-dimensional assumption, is in contrast
with the Navier–Stokes equations also in the Lagrangian frame. Figure 1(a) shows
the plot of 〈u‖|u⊥〉/〈u2

‖〉1/2 vs · u⊥/〈u2
⊥〉1/2 and figure 1(b) 〈u⊥|u‖〉/〈u2

⊥〉1/2 vs · u‖/〈u2
‖〉1/2

as computed from the Lagrangian data of the DNS (Biferale et al. 2005). From these
figures, the statistical dependence between u‖ and u⊥ is evident. Both graphs have
significant statistical noise for large abscissa values, as the number of particle pairs
having large fluctuation is small. However, a strong correlation between u‖ and u⊥ is
evident when the figure 1(a) abscissa is less than 2 and the figure 1(b) abscissa ranges
between −2 and 2. Furthermore, in these cases of strong correlation, a linear relation
occurs in both figures 1(a) and 1(b). This strong correlation occurs for decreasing
abscissa values when the time elapsed from the initial condition is increasing. This
can be understood by the fact that the whole process decorrelates when the elapsed
time increases.

Equations (4.4)–(4.7) show that the approach proposed here is not compatible
with the quasi-one-dimensional assumption. Moreover, the strong characteristic of the
Navier–Stokes dynamics of generating statistical dependence between the longitudinal
and the orthogonal components of the velocity increments cannot be disregarded in
the present formulation. The explicit rotation term causes this statistical dependence
and the following non-factorability of the Eulerian PDF.

4.2. Mean rotation analysis

The Lagrangian stochastic model formulation proposed is based on a non-zero angular
velocity Ω (3.2), which causes the statistical dependence between the longitudinal and
orthogonal components of the velocity difference. The effects of this non-zero angular
velocity on the mean rotation are now discussed.

Sawford (1999) introduced the following measure of the rotation

ds = u × du, (4.8)

du being known from the stochastic model (1.1a, b). Equation (4.8) can be averaged
in the Eulerian way (Sawford 1999) to study the mean rotation effects as follows

〈 ds〉 = 〈u × a〉 dt, (4.9)

where the fact that the Wiener process has zero mean is used.
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Figure 1. The scaled conditional mean (a) 〈u‖|u⊥〉/〈u2
‖〉1/2 vs. u⊥/〈u2

⊥〉1/2 and (b) 〈u⊥|u‖〉/
〈u2
⊥〉1/2 vs. u‖/〈u2

‖〉1/2 computed from the DNS data with Rλ = 284 (Biferale et al. 2005) at

times t = 27.88τη, 41.82τη, 55.76τη, 69.70τη . The plots show the statistical correlation between
the Lagrangian u‖ and u⊥; in particular, this correlation is strong when abscissa in (a) is less
than 2 and the abscissa in (b) ranges between −2 and 2.

The drift coefficient in (3.14), after imposing (3.20), is composed by two terms and
(4.9) becomes

〈ds〉 = −r〈χ‖Ω〉 dt + 〈u × R〉 dt,

with R = Ω × u. It is of interest to study the mean rotation effects introduced by R,
because the value of 〈χ‖Ω〉 depends on the choice of the Eulerian PDF pE (3.25)–
(3.26). Let 〈dsR〉 be

〈dsR〉 = 〈u × R〉 dt = 〈u × (Ω × u)〉 dt.

When using the following vector identity u × (Ω × u) = Ω(u · u) − u(u · Ω), 〈dsR〉
becomes

〈dsR〉 = 〈Ω(u · u)〉 dt − 〈u(u · Ω)〉 dt,
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and for the Cartesian components this yields〈
dsR

i

〉
= 〈Ω i(u · u)〉 dt − 〈ui(u · Ω)〉 dt. (4.10)

Now, including (3.2) in (4.10), we obtain〈
dsR

i

〉
=

1

r2
[〈(εijkrjuk)u

2〉 − 〈uiui(εijkrjuk)〉+ 〈uiuj (εjkirkui)〉+ 〈uiuk(εkij riuj )〉] dt,

and finally 〈
dsR

i

〉
= 0.

It is therefore possible to conclude that the effect of the angular velocity term (3.2)
on the mean rotation is zero. This is consistent with the isotropy of the flow.

4.3. Compatibility with the vorticity field

The approach derived here is based on the decomposition of the two-point velocity
vector (3.1). This decomposition is physically based on the idea that the two-particle
dispersion process has a non-zero angular velocity Ω (3.2) that, as it will be shown
in this section, makes the present closure consistent with a non-zero vorticity field.
As pointed out in (Monin & Yaglom 1975, p. 374) the statistical characteristics of
the vorticity field are related to the two-point Eulerian statistics. For the relationship
between relative dispersion and the two-point Eulerian theory, the consistency of a
two-particle Lagrangian model with the vorticity field is an important aspect.

Longitudinal and orthogonal correlation functions of the vorticity field can be
expressed in terms of the longitudinal Eulerian second-order velocity structure
function SE = 〈[(U(x) − U(x + r)) · r/r]2〉 = CK (εr)2/3, where U(x) is the velocity
in point x and CK the Kolmogorov constant. As a consequence, the vorticity field
is non-zero. This observation makes a non-zero angular velocity Ω necessary in the
decomposition (3.1)–(3.2). In fact, the vorticity field is defined in a single point x as
ω(x) = ∇x × U(x), and then being (see Hill 2002)

∂

∂ri

=
1

2

(
∂

∂xi

− ∂

∂x ′i

)
, r = x − x ′,

with u(r) = U(x)− U(x + r) it follows that

ω(x) + ω(x ′) = 2 [∇r × u(r)]

= 2

[
∇r ×

(
u‖

r
r

)
+ ∇r × (Ω × r)

]
= 2 [−Ω + ∇r × (Ω × r)] .

For the arbitrariness of x and x ′, if Ω = 0, the latter equation requires the
unsatisfactory result ω(x) = ω(x ′) = 0. As a consequence, decomposition (3.1)–
(3.2), which is a fundamental part of the approach derived here, guarantees a correct
non-null vorticity field. On the other hand, this means that any model formulation
without particle pair rotation (i.e. with a zero angular velocity Ω) is not in agreement
with the non-zero vorticity field.

4.4. The small-length-scale limit and the large-fluctuation regime

The strong connection between turbulent relative dispersion and two-point Eulerian
theory suggests, as important, the issue of the small-length-scale limit. Besides this,
also the large-fluctuation regime (u2 � 〈u2〉) has an important role in turbulent
dispersion. This last was studied for the first time by Novikov (1992) with particular
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attention to the form of the Eulerian PDF. The large-fluctuation regime ‘physically
corresponds to motions with large local shear of velocity or to local jetlike motions
(“streaks”), when one of the fluid particles is inside the jet and another is outside. In
this case, the inertial term, subject to the incompressibility condition, should dominate’
(Novikov 1992). These two asymptotic regimes correspond to the same mathematical
constraint. A similar study can be found in Pedrizzetti & Novikov (1994).

In stationary, homogeneous and incompressible flow, the continuity equation for
the Eulerian PDF, or the transport equation, has the form (Pope 1985; Novikov 1992;
Heppe 1998)

ui

∂pE

∂ri

+
∂

∂ui

[〈
DUi

Dt
|u, r

〉
pE

]
= 0, (4.11)

where DUi/Dt represents the two-point Navier–Stokes equation and 〈·|u, r〉 the
conditional mean. Equation (4.11) can be compared with the evolution equation
obtained applying (1.3) to the Fokker–Planck equation for the Lagrangian PDF (1.2),
and this yields ai = 〈DUi/Dt |u, r〉 + C0ε∂ log pE/∂ui . In the case considered, from
(3.7) and (3.9) the transport equation (4.11) turns out to be

1

r2

∂

∂r
(r2u‖pE) +

∂

∂u‖

[〈
DU
Dt

· r
r

+
U 2
⊥
r
|u, r

〉
pE

]

+
∂

∂u⊥

[〈
1

U⊥

(
Ui

DUi

Dt
− U‖

DU
Dt

· r
r

)
−

U⊥U‖

r
|u, r

〉
pE

]
= 0.

Using (3.22), this becomes

1

r2

∂

∂r
(r2u‖pE) +

∂

∂u‖

[〈
DU
Dt

· r
r

+
U 2
⊥
r
|u, r

〉
pE

]
= 0, (4.12)

where both 〈(DU/Dt) · (r/r) + (U 2
⊥/r)|u, r〉 and pE are functions of {u‖, u⊥, r} and

from (3.24) it follows that〈
DU‖

Dt
|u, r

〉
=

〈
DU
Dt

· r
r

+
U 2
⊥
r
|u, r

〉

=

〈
DU
Dt

· r
r
|u, r

〉
+

u2
⊥
r

= χ‖(u‖, u⊥, r)−
C0ε

pE

[
∂pE

∂u‖
+

1

u⊥

∂

∂u⊥

(
u⊥

∂

∂u⊥

∫ u‖

−∞
pEdu′‖

)]
. (4.13)

It is important to remark that, although (4.12) is a partial differential equation in
(r, u‖), the Eulerian PDF pE and the term 〈(DU/Dt) · (r/r)+U 2

⊥/r |u, r〉 are functions
of (r, u‖, u⊥). This is consistent with the fact that in the isotropic case the statistics of
u⊥ are related to those of u‖.

Since in the small-length-scale limit the process is in equilibrium, the velocity
is completely uncorrelated and the two-point Eulerian statistics turn out to be
independent of r , i.e. pE = pE(u). Indeed, in the large-fluctuation regime, the inertial
term dominates (Novikov 1992) and the spatial derivative is neglected even if
the two-point Eulerian statistics are still dependent on the particle separation, i.e.
pE = pE(u|r). Then, in both asymptotic regimes, studying (4.11) is equivalent to
analysing the constraint

∂

∂ri

(uipE) = 0, (4.14)
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but in the two previous strongly different physical conditions. In the spherical frame,
constraint (4.14) is given by

u‖
∂pE

∂r
+

u2
⊥
r

∂pE

∂u‖
−

u‖u⊥

r

∂pE

∂u⊥
= 0. (4.15)

In the small-length-scale limit (∂pE/∂r = 0), condition (4.15) becomes

1

u‖

∂pE

∂u‖
=

1

u⊥

∂pE

∂u⊥
, (4.16)

and the Eulerian PDF is Gaussian

pE(u‖, u⊥) =
1

(2π)3/2σ 3
exp

{
−

u2
‖ + u2

⊥

2σ 2

}
, (4.17)

with 〈u2
‖〉 = σ 2 and 〈u2

⊥〉 = 2〈u2
‖〉 = 2σ 2. The stochastic process (1.1a, b) turns out

to be an Ornstein–Uhlenbeck process where ai = −ui/τL, and τL is an inertial range
Lagrangian time scale defined by Tennekes (1982) as

τL =
σ 2

C0ε
=

2σ 2
1p

C0ε
, (4.18)

where σ 2
1p is the one-point velocity variance.

In the large-fluctuation regime, using the K41 scaling, the Eulerian PDF which is
the solution to (4.15) is a function of the following type (Novikov 1992):

pE(u‖, u⊥; r) = F (u, u⊥r) = (εru⊥)
−3/4F0

[
u2
‖ + u2

⊥

(εru⊥)1/2

]
. (4.19)

This is an unexpected form of the joint probability and it is strongly non-Gaussian.
The odd moments of u‖ vanish in this regime because pE is an even function of u‖
(4.19).

If condition (4.15) is derived for the approach proposed here, the following identity
is obtained:

1

r2

∂

∂r
(u‖r

2pE) +
u2
⊥
r

∂pE

∂u‖
− 1

u⊥

∂

∂u⊥
[(aiui − a‖u‖)pE] = 0. (4.20)

It is possible to verify that (4.20) reduces to (4.15), when constraint (3.20) is applied.
The correct behaviour of the approach proposed here for these two asymptotic
limits is another interesting feature besides the non-factorizability of the Eulerian
PDF, as discussed in § 4.1. In fact, while the small-length-scale limit is assured for
Gaussian models (Thomson 1990; Borgas & Sawford 1994), the large-fluctuation
regime is not, because the Eulerian PDF should be non-Gaussian. The quasi-one-
dimensional assumption is not compatible with the small-length-scale limit; in fact,
when ai = −ui/τL, formula (3.7) gives χ‖ = −u‖/τL + u2

⊥/r . Moreover, the large-
fluctuation regime requires a non-factorizable Eulerian PDF and this cannot be
reproduced by the quasi-one-dimensional assumption.

5. Formulation of a Markov model
5.1. A quadratic model

To complete the previous study, a simple illustrative Markov model is developed in the
approach outlined above and the results are compared with the DNS data by Biferale
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Rλ urms ε ν η L TE τη T δx N3 Np

284 1.7 0.81 0.00088 0.005 3.14 1.8 0.033 4.4 0.006 10243 1.92 · 106

Table 1. DNS parameters: microscale Reynolds numbers Rλ, velocity root mean square urms,
mean turbulent kinetic energy dissipation ε, viscosity ν, Kolmogorov space scale η = (ν3/ε)1/4,
integral space scale L, eddy turnover time TE = L/urms, Kolmogorov time scale τη = (ν/ε)1/2,

total time T , grid step δx, resolution N3, number of particles Np .

Reference Rλ

Sawford et al. (2005) ∼ 38
Borgas & Yeung (2004) ∼ 90, 230
Kurbanmuradov et al. (2001) ∼ 240
Sawford & Yeung (2000) ∼ 148
Heppe (1998) ∼ 90, 140
Borgas & Yeung (1998) ∼ 38, 90, 140, 180, 240

Table 2. The value of the Reynolds number Rλ in a number of recent comparisons between
Markov models and DNS.

et al. (2005) on a cubic lattice 10243 with Reynolds number Rλ ∼ 284 (see table 1).
Following the well-mixed approach, a stochastic model can be formulated when an
Eulerian PDF (which includes the flow statistics) is given. Although in stochastic
models the intermittency and viscous range effects can be accounted for, here they
are neglected to avoid free parameters and parameterization effects. This choice
permits a completely parameter-free model for the inertial range. As a consequence,
when particle separation falls inside the viscous range, the failure of the model is
expected. Comparing DNS data of a moderate Rλ with a model that takes into
account the inertial range only, does not seem fully appropriate. However, the DNS
dataset used is among those with highest Reynolds numbers available in literature.
Recent comparisons between Markov models and DNS have lower value of Rλ than
the one considered here (see table 2).

In the K41 case, for dimensional reasons, the Eulerian PDF can be written as

pE = f (u‖, u⊥, r, λ, ε) =

⎧⎨
⎩(εr)−1f0

(
u‖

(εr)1/3
,

u⊥

(εr)1/3
,
λ

r

)
, r < λ,

(4.17), r > λ,

(5.1)

where λ is a length scale, and the Eulerian statistics are computed by

mk,n = 〈uk
‖u

n
⊥〉 = 2π

∫ +∞

−∞
du‖

∫ +∞

0

du⊥u⊥u
k
‖u

n
⊥pE(u‖, u⊥; t |r), (5.2)

so that

mk,n =

{
Ck,n(εr)

(k+n)/3, r < λ,

Gauss, r > λ.
(5.3)

In particular, it is m0,0 = 1 for the normalization condition and in the inertial range

m1,0 = 0, m2,0 = CK (εr)2/3, m3,0 = − 4
5
εr,

m1,1 = 0, m1,2 = − 8
15

εr, m0,2 = 8
3
m2,0.

(5.4)
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The stochastic model is uniquely defined adopting the constraint (3.20) and
substituting (5.1) in (3.25)–(3.26). However, with (3.20), the drift term ai (3.6) becomes

ai = ϕ
ri

r
+

u‖ui

r
. (5.5)

To avoid mathematical difficulties, the choice of pE can be reduced to the choice of ϕ.
Making this choice, particular attention has to be paid to the longitudinal component,
because it is strictly related to the particle separation r , i.e. dr/dt = u‖. Here, the
following simple choice of ϕ is studied

ϕ = −
u‖

τ (r)
+ γ

u2
‖

r
+

1

2

u2
⊥
r

+ ρ
u‖u⊥

r
, (5.6)

where {γ, ρ} are the model parameters, which will be determined by imposing Eulerian
statistics. The relaxation time, denoted by τ (r), depends on the particle separation
and is defined as

τ (r) =
〈u2
‖〉

C0ε
. (5.7)

In the limit r � λ, (5.7) reduces to τ = τL = 2σ 2
1p/(C0ε), i.e. the inertial-range

Lagrangian time scale (4.18). Factor 1/2 in front of u2
⊥ in (5.6) is the average of the

two perpendicular components being u2
⊥ = u′2⊥+ u′′2⊥ and ρ turns out to be a coupling

parameter of the longitudinal and the orthogonal components. In this case,

ai =

(
−

u‖

τ (r)
+ γ

u2
‖

r
+

1

2

u2
⊥
r

+ ρ
u‖u⊥

r

)
ri

r
+

u‖ui

r
, (5.8)

and from (3.7) it follows that

χ‖ = −
u‖

τ (r)
+ (γ + 1)

u2
‖

r
+

3

2

u2
⊥
r

+ ρ
u‖u⊥

r
. (5.9)

5.2. Model parameter determination by incompressibility and Eulerian statistics

5.2.1. Determination of γ

To ensure the incompressibility in stochastic model, the following condition must
hold (Novikov 1989, 1992; Pedrizzetti & Novikov 1994; Pedrizzetti 1999):

〈ai〉 = 0, (5.10)

so using formula (Monin & Yaglom 1975, p. 102)

〈uiuj 〉 =
[
〈u2
‖〉 − 1

2
〈u2
⊥〉

] rirj

r2
+ 1

2
〈u2
⊥〉δij , (5.11)

and the inertial range moments {m1,0, m2,0, m0,2, m1,1} in (5.4), it follows that

γ = − 4
3
− 1 = − 7

3
. (5.12)

5.2.2. Determination of ρ

The parameter ρ is determined by imposing the consistency with some other
Eulerian statistical moments, as in the moments approximation approach. In this
case, Eulerian statistics have to be consistent with K41 theory. Multiplying (3.24)
by uk

‖u
n
⊥, with k �= 0, and integrating with respect to 2πu⊥ du‖ du⊥, see (5.2),
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yields

2

r
mk+1,n +

∂

∂r
mk+1,n +

k

τ
mk,n

+
4

3

k

r
mk+1,n −

3

2

k

r
mk−1,n+2 − ρ

k

r
mk,n+1

= C0ε{k(k − 1)mk−2,n + n2mk,n−2}. (5.13)

Equation (5.13) gives a relationship among all the Eulerian statistics of the Markov
model (5.9). The moment exponent k must be k �= 0, otherwise the equation for
moments (5.13) turns out to be independent of the drift term χ‖, as follows from
(3.24), and it becomes the same equation for moments of a pure diffusive model in
the longitudinal velocity space (χ‖ = 0). In this case, when Ω �= 0, the process is
compressible because 〈ai〉 = −〈u2

⊥〉ri/r2 �= 0, when Ω = 0 (the equilibrium regime),
unphysical results are obtained because ai = 0 (Pedrizzetti & Novikov 1994). The
consistency with the K41 Eulerian statistics can be imposed by selecting certain
values for k and n. In particular, with {k = 1, n = 0} condition (5.12) is recovered
and requires consistency with: m1,0, m2,0, m0,2, m1,1. Moreover, with {k = 3, n = 0},
the consistency with Eulerian statistics is up to the fourth order: m3,0, m4,0, m2,2,
m3,1. It is worth noting that, in spite of this simple case study, model (5.9) is in
agreement with more Eulerian statistics than previous models found in literature (see
Pedrizzetti & Novikov 1994; Heppe 1998; Borgas & Yeung 2004). Moreover, from the
consistency with m3,0 and incompressibility, the consistency with m1,2 (4.2) follows.
Indeed, knowledge of m4,0 and m2,2 does not imply consistency with m0,4 because the
incompressibility is not sufficient and knowledge of the pressure–gradient velocity–
velocity structure function is required (Hill & Boratav 2001). An approximate relation
between fourth-order statistics to estimate m0,4 can be obtained by adopting the
random sweeping hypothesis (Tennekes 1975) because the pressure–gradient velocity–
velocity structure function can be disregarded. Since experiments do not support the
random sweeping hypothesis (Hill & Boratav 2001), the consistency of the model
with m0,4 can not be derived. Finally, imposing {k = 3, n = 0} to (5.13) gives

ρ =
1

m3,1

[
2m4,0 +

r

3

∂m4,0

∂r
+ C0εr

m3,0

m2,0

− 3

2
m2,2

]
. (5.14)

In the next section, the Eulerian statistics mk,n needed to compute ρ and to determinate
the drift ai are determined by the analysis of the DNS data.

5.3. DNS data analysis and drift determination

5.3.1. Universal constants and drift determination

The universal constants {C0, CK} and the unknown fourth-order Eulerian statistics
{m4,0, m2,2, m3,1} computed from the corresponding Lagrangian or Eulerian dataset
of the same DNS (Biferale et al. 2005), see table 1 and figures 2–3, are:

C0 = 5, CK = 7
4
, (5.15)

m4,0 = 87
8
(εr)4/3, m2,2 = 52

5
(εr)4/3, m3,1 = − 31

20
(εr)4/3. (5.16)

The accepted values in literature are C0 = 5 (Anfossi et al. 2000) and CK =
4.02 × 0.5 = 2.01 (Sreenivasan 1995). The longitudinal flatness value considered here
is m4,0/m2

2,0 = 174/49 � 3.55, even if a non-constant value of the flatness with respect
to r is evident in figure 4. The flatness value increases when the Reynolds number
increases (Antonia, Satyaprakash & Chambers 1982; Pearson & Antonia 2001). In
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Figure 2. The second-order Lagrangian structure function in Cartesian coordinates
SL = C0εt computed from the DNS data at Rλ = 284 (Biferale et al. 2005): C0 = 5.

the literature, flatness values are found to be approximately 4 (see Antonia et al. 1982,
1997; Hill & Wilczak 1995, 2001).

Another important dimensionless fourth-order moment is the ratio H =
m2,2/(2m4,0), because it is strongly related to the longitudinal pressure–gradient
velocity–velocity structure function (Hill & Boratav 2001). From (5.16), H =
208/435 � 0.48, which is in agreement with literature values. In fact, H is determined
as H = 5/9, with the random sweeping approximation (Hill & Boratav 2001), or as
H = 4/9, with the Ould-Rouis et al. (1996) approximation formula. Moreover, experi-
ments give H = 0.43 (Hill & Wilczak 1995) and H = 0.44r0.05 (Nelkin & Chen 1998).

Finally, from (5.14) and (5.16) the coupling constant is determined as ρ =
−3653/651 ∼ −5.6 and the drift term ai becomes

ai =

(
−

u‖

τ (r)
− 7

3

u2
‖

r
+

1

2

u2
⊥
r
− 3653

651

u‖u⊥

r

)
ri

r
+

u‖ui

r
. (5.17)

5.3.2. Evaluation of neglect of intermittency on the Markov model

It is well known that the high-order Eulerian statistics are affected by intermittency
and Reynolds-number dependence (Antonia et al. 1982; Frisch 1996; Pearson &
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at Rλ = 284 (Biferale et al. 2005). (b) The horizontal lines correspond, from the top to the
bottom, to the values: 87, 52, 35/2, 31/20.

Antonia 2001), and this effect is evident from the fourth order. However, the current
model is non-intermittent so a measure of the departure from the K41 power law is
important. Following (Hill & Wilczak 1995), in the inertial range

m4,0 = C4,0ε
4/3rq, q = 4/3− q ′, (5.18)

where C4,0 depends on the macrostructure of the flow and has the dimension of
length raised to the power q ′. This intermittency correction q ′ depends on the
value of the intermittency parameter μ and the intermittency model adopted:
from literature measurements, μ = 0.20 (Sreenivasan & Kailasnath 1993) or 0.25
(Praskovsky & Oncley 1994), and from theory, μ = 2/9 (She & Leveque 1994).
Moreover, with the log-normal model q ′ = 2μ/9 and then q ′ is 0.044 and 0.055
for the two experimental values of μ. With the β-model q ′ is equal to 0.067
and 0.083; the log-Poisson model q ′ = 0.054 (theoretical μ = 2/9), the log-Lévy
model q ′ = 0.06. For the definition of q ′ in the intermittency models see table 1 in
Anselmet, Antonia & Danaila (2001), but note that there is a misprint. In fact, if
in the log-Lévy model 〈εp

r 〉 ∼ (L/r)K(p) then mp,0 ∼ rp/3〈εp/3
r 〉 ∼ rp/3−K(p/3) and so

ξp = p/3−C1[(p/3)ϕ− (p/3)]/(ϕ−1). From formula μ = 2− ξ6 and the experimental
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Figure 4. Eulerian longitudinal flatness F = m4,0/(m2,0)
2 computed from the DNS data at

Rλ = 284 (Biferale et al. 2005). Line F = 3 corresponds to a Gaussian density value while
F = 174/49 is the flatness value obtained from (5.15)–(5.16) and considered in the present
model.

measures {ϕ = 1.5, C1 = 0.15}, the intermittency parameter is determined as μ � 0.25.
With the misprinted formula ξp = p/3−C1[p

ϕ−p]/(ϕ−1), q ′ becomes 1.2 and μ � 2.6,
which is too high when compared to the previous values. In conclusion, after this
short review, disregarding the intermittency has little influence on the Markov model
because very small differences from the 4/3 power law occur.

5.4. Numerical results

5.4.1. Numerical simulation set-up

The numerical simulations of the model are performed with the initial conditions
{r1 = r2 = r3 = r0/

√
3} and {u1 =

√
F, u2 = u3 =

√
G}, where {ri, ui; i = 1, 3} are the

particle separation and the velocity difference in Cartesian coordinates, respectively,
F is the longitudinal second-order structure function F = CK (εr0)

2/3 and G the
perpendicular one, which is determined as G = 4F/3 from the following formula
(Monin & Yaglom 1975, p. 106):

1
2
〈u2
⊥〉 = 〈u′2⊥〉 = 〈u2

‖〉+
r

2

∂〈u2
‖〉

∂r
. (5.19)

Since the form of pE is unknown, the initial velocity distribution does not meet
the initial condition of (1.3). From this choice riri = r2

0 , u2
‖ = (uiri/r)2 = F and

u2
⊥ = uiui − u2

‖ = 2G. The initial separation is r0 = 2.4η, and the time step dt is fixed
at a value of dt = 10−5. The statistical moments are computed with 2000 particle
pairs and the probability density functions by averaging 10 independent runs.

Moreover, Lagrangian stochastic model formulation requires the knowledge of
some turbulent flow parameters, i.e ε, C0, CK . In particular, ε = 0.81 (see table 1) and
C0 = 5 and CK = 7/4 (5.15).

5.4.2. Particle separation density function

Particle separation is described well in the inertial range by Richardson’s (1926)
suggestion. Later on, Richardson’s ideas were formalized by Obukhov (1941) and
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t 34.85τη 55.77τη 69.70τη

〈r〉 0.69 1.38 1.93
〈r〉DNS 0.50 1.14 1.66
〈r2〉 0.56 2.25 4.40
〈r2〉DNS 0.42 1.94 4.00
S 0.80 0.84 0.84
SDNS 1.47 1.24 1.13
K 3.65 3.78 3.82
KDNS 5.92 4.94 4.49

Table 3. Mean, variance, skewness S = 〈(r−〈r〉)3〉/〈(r−〈r〉)2〉3/2 and kurtosis K = 〈(r−〈r〉)4〉/
〈(r − 〈r〉)2〉2 of r computed by the PDF data of the model and DNS with Rλ = 284 at times:
34.85τη , 55.77τη , 69.70τη . For the Gaussian PDF {SG = 0.5; KG = 3.1} and for the Richardson
PDF {SR = 1.7; KR = 7.8}.

Batchelor (1950). In particular, the Richardson scheme is based on the idea of a
spatial power law of the diffusion coefficient, i.e. K(r) = αr4/3 (Richardson 4/3 law).
Inserting K(r) into the diffusion equation the PDF of the particle separation gives

pR(r; t) = 4πr2 3

35π3/2

(
3

2

)6

(αt)−9/2 exp

{
−9r2/3

4αt

}
, (5.20)

which is called the Richardson density function. This probability density pR is
confirmed by experiments (Ott & Mann 2000) and DNS (Boffetta & Sokolov 2002;
Yeung & Borgas 2004).

The comparison of the probability density of r among model (5.17), DNS, Gaussian
and Richardson PDFs (5.20) is shown in figures 5 and 6 at three different time values,
i.e. t = 34.85τη, t = 55.77τη and t = 69.70τη. In these plots, the PDFs are multiplied
by (〈r2〉− 〈r〉2)1/2 and plotted against (r −〈r〉)/(〈r2〉− 〈r〉2)1/2 to reduce the difference
related to the specific numerical value of the moments as well as to highlight the
scaling laws. This causes negative values in the abscissa. Since the viscous range is not
modelled, the PDF of the model is quasi-Gaussian for low r , whereas a good scaling,
close to that of the PDF of DNS, is observed for inertial range separation. However,
in general, the particle separation density function generated by model (5.17) is not
Gaussian (see table 3). The difference in the particle separation density functions
at low r (figures 5–6) is generated by the different duration of the ballistic regime
between the model and DNS (see also figures 7–9). In fact, strongly different physical
conditions occur for low r . In the model, the viscous effects are completely neglected
(the velocity initial condition is F = CK (εr0)

2/3) whereas in DNS they are dominant
because of the low Reynolds number (F ∼ r2

0 ).
This means that in DNS, when two particles are so close that they are in the

viscous range, they require more time to return to an inertial range separation than
particle pairs in the model. This causes a higher probability of finding a particle pair
with small r in DNS than in the stochastic model. Furthermore, by increasing time
towards the inertial range, the difference between the model and DNS decreases in
all statistics, as can be seen in figures 5 and 6.

With a more complex model the viscous effects can be considered and therefore the
small time and small separation behaviour can be correctly described, as highlighted
in (Borgas & Yeung 2004) with a quasi-one dimensional approach and in (Heppe
1998) with a non-Markovian model.
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number of DNS data is Rλ = 284 (Biferale et al. 2005).



Lagrangian stochastic models for turbulent relative dispersion 379

10–2

10–1

100

–3 –2 –1 0 1 2 3 4 5

MOD

DNS

RICH

GAUSS

p(
r)

 (
�

r2
�

–
 �

r�
2
)1

/2

10–2

10–1

–3 –2 –1 0 1 2 3 4 5

p(
r)

 (
�

r2
�

–
 �

r�
2
)1

/2

10–2

10–1

–3 –2 –1 0 1 2 3 4 5

p(
r)

 (
�

r2
�

–
 �

r�
2
)1

/2

(a)

(b)

(c)

(r–�r�)/(�r2�–�r�2)1/2
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The Reynolds number of DNS data is Rλ = 284 (Biferale et al. 2005).
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5.4.3. Particle separation statistics

When the variance of the particle separation 〈r2〉 is computed using pR (5.20), the
so-called Richardson t3 law is obtained

〈r2〉 = gεt3, (5.21)

where g = ε−1(143/3)(2α/3)3 is a universal constant. The value of the Richardson
constant g ranges between 0.06 and 6 (Ott & Mann 2000). Experimental measurements
by Ott & Mann (2000) and DNS (Boffetta & Sokolov 2002) give g = 0.5, and Berg
et al. (2006) experimentally found g = 0.55 ± 0.05. Moreover, with extrapolation to
the large-Reynolds-number limit, Sawford, Yeung & Hackl (2008) obtained by the
analysis of several DNS datasets, g = 0.55 − 0.57. In the inertial range, neglecting
intermittency, from the dimensional analysis, 〈rn〉 = gnε

n/2t3n/2, where gn are universal
constants and g2 = g is the Richardson constant. An important feature of Lagrangian
models is their ability to reproduce the t3 law (5.21) with a value of g in agreement
with the experimental and DNS literature value.

Figures 7, 8 and 9 show the plots of the mean separation 〈r〉, the root mean square
separation 〈r2〉1/2 and the mean square separation 〈r2〉, respectively. The model and
DNS are compared with respect to the ballistic and inertial scalings and the fits shown
in the plots are those with the corresponding universal constants. In these figures,
the inertial range dimensional behaviour of the model statistics is evident, whereas
that of DNS is affected by low-Reynolds-number and viscous effects. In particular,
in figure 7, constant g1 is fitted as g1 = 0.6 and, in figure 9, the Richardson constant
of the Lagrangian model and that of DNS are very close and the value g = 0.43
has been taken. This value is in better agreement with experimental (Ott & Mann
2000; Berg et al. 2006) and DNS (Boffetta & Sokolov 2002; Ishihara & Kaneda 2002)
literature values than other stochastic models, see § 5.5.1 and table 4.

A difference between the model and DNS after the ballistic regime is evident in
figures 7, 8 and 9. However, comparing this discrepancy for 〈r2〉1/2 and 〈r〉, which
from the above non-intermittent dimensional analysis have the same power law, it is
clearly less for 〈r2〉1/2 (figure 8) than for 〈r〉 (figure 7). This suggests different scalings
and may be the result of intermittency effects. In fact, as Novikov (1989) pointed out,
〈r2〉 is the only statistic not affected by intermittency corrections. This can also be the
explanation for the good performance of the Markov model to capturing 〈r2〉, even
if the DNS data are intermittent.

An important test for the model is to verify its ability to reproduce the t3 law, with
a Richardson constant g in agreement with the literature value, even in standard case
studies which are not related to the particular DNS dataset by Biferale et al. (2005).
Details of this analysis are presented in Appendix C. It follows that for CK = 2.1,
as suggested by Sreenivasan (1995), and C0 = 5, 6 and 7, the values of g obtained
are 0.45, 0.55 and 0.65, respectively. Moreover, setting CK = 2 and C0 = 6, in both
case studies σ 2

1p = ε = 1 and τL = λ = 1, the Richardson constant turns out to be
0.55. These results show a very good agreement of the model with the experimentally
measured Richardson constant g = 0.55 ± 0.05 by Berg et al. (2006) and with the
extrapolation to the large-Reynolds-number limit g = 0.55−0.57 derived by Sawford
et al. (2008).

5.5. Performance comparison with other models

5.5.1. The value of the Richardson constant

After the comparisons with other well-mixed models, with respect to the theoretical
formulation, now the model performances are compared with respect to the value of
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Figure 7. Comparison between the model (MOD) and DNS of the ballistic and inertial
scalings of 〈r〉. The dotted straight line is the fit in the inertial range of the universal constant
that emerges from dimensional analysis. The Reynolds number of DNS data is Rλ = 284
(Biferale et al. 2005).

the Richardson constant g. For this purpose, moments approximated models are also
included (Pedrizzetti & Novikov 1994; Heppe 1998). In the present study, a good fit
of the DNS data and the model is found for g = 0.43. The reference literature value
is g ∼ 0.5 (Ott & Mann 2000; Boffetta & Sokolov 2002; Ishihara & Kaneda 2002;
Berg et al. 2006).

Since Lagrangian stochastic models in the well-mixed class depend on a
dimensionless parameter β , which is the Lagrangian-to-Eulerian scale ratio (Maurizi,
Pagnini & Tampieri 2004, 2006), the comparison of performances is done with the
same value of β for all models. This parameter β can be related to the universal
constants C0 and CK in the following way. Let SL and SE be the second-order structure
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Figure 8. As figure 7, but for scalings of 〈r2〉1/2.

functions in the Lagrangian and in the Eulerian frame, respectively, given by

SL = 2 σ 2
1p t/τL = C0εt, SE = 2 σ 2

1p (r/λ)2/3 = CK (εr)2/3,

where τL denotes the Tennekes Lagrangian time scale defined by (4.18). A similar
definition for Eulerian length scale (Maurizi et al. 2004, 2006)

λ = ε−1

(
2σ 2

1p

CK

)3/2

(5.22)

follows. From (5.15), table 1 and σ 2
1p = u2

rms, the length scale λ is determined to be
λ = 7.41. Combining (4.18) and (5.22) the dimensionless parameter β can be expressed
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scalings of 〈r2〉. The dotted straight line is the fit in the inertial range of the Richardson
constant: g = 0.43. The Reynolds number of DNS data is Rλ = 284 (Biferale et al. 2005).

as

β =
σ1p τL

λ
=

C
3/2
K√
2C0

. (5.23)

To perform numerical simulations of model (5.17) the value of β must be determined.
This requires β to be computed with Eulerian and Lagrangian quantities measured
in the same experiment or DNS. From the DNS data analysed, the parameter β is
determined as β = (7/4)3/2/(5

√
2) ∼ 0.33. Eulerian and Lagrangian quantities from

the same experiment or DNS seems to be unavailable in literature as yet. Moreover,
Eulerian and Lagrangian parameters measured by the same DNS are not used to
construct models in the intercomparisons between stochastic models and DNS (Heppe
1998; Borgas & Yeung 2004). It is important to remark that here, differently from
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Models g CK C0 β

Present model (DNS comparison) 0.43 7/4 5 0.33
Present model (standard case study, Appendix C) 0.55 2 6 0.33
Well-mixed models with Gaussian PDF

Borgas & Sawford (1994):
Model (4.2a) 0.6 2 6 0.33
Model (4.3) 1.16 2 6 0.33
Model (7.6) with ϕ = −0.4 0.9 2 6 0.33
Thomson (1990) 1.1 2 6 0.33

Quasi-one-dimensional well-mixed models
Borgas & Yeung (1998) 1.7 2 6 0.33
Kurbanmuradov et al. (2001):
Bi-Gaussian PDF (σ1 = σ2) 1.67 2 6 0.33
Bi-Gaussian PDF (μ1/σ1 = −μ2/σ2) 2.27 2 6 0.33
Gaussian PDF 2.8 2 6 0.33
Sawford et al. (2005):
Tri-Gaussian PDF (1, 0.929) 1.14 2 7 0.29

Moments approximated models
Pedrizzetti & Novikov (1994) (c = 9.5, γ = 3) 0.122 2 7.1 0.28
Heppe (1998) 0.44 2 16/3 0.37

Table 4. The g values of Borgas & Sawford (1994) are taken from the data file of figure 2 in
Maurizi et al. (2006), the other values from Kurbanmuradov et al. (2001) except those from
Pedrizzetti & Novikov (1994) and Sawford et al. (2005), which are taken from the original
papers. For the meaning of the model parameters please refer to the original papers.

previous model–DNS intercomparisons (Heppe 1998; Borgas & Yeung 2004), the
Eulerian statistics used are those measured from the same DNS as the Lagrangian
statistics and not literature values. The comparison of the values of the Richardson
constant obtained with the present and other models for β ∼ 0.33 are shown in table 4.

The comparison with Pedrizzetti (1999) and Borgas & Yeung (2004) models is not
included. In particular, the comparison with the Pedrizzetti (1999) model is not shown
in table 4, because the β value in the original paper is not comparable; however,
for the same model in Kurbanmuradov et al. (2001) it is shown that g = 0.35 when
β = 0.2 (CK = 2, C0 = 10.25). Also, the comparison with Borgas & Yeung (2004)
is not possible because they have β = 0.23 (CK = 2.1, C0 = 9) and, furthermore,
because their results are the consequence of the collective choice of a number of
free parameters tuned for optimal agreement with their DNS data. Here, the good
agreement with the DNS g value follows from no free tunable parameter.

From the analysis of table 4, it follows that, even if qualitatively in agreement with
the DNS data, the quasi-one-dimensional model, predicts higher value of g. The same
conclusion is reported in Kurbanmuradov et al. (2001). Moreover, for what concerns
the tri-Gaussian quasi-one-dimensional model (Kurbanmuradov 1997), besides the
value of g given in Sawford et al. (2005) and reported in table 4, we can estimate
from figure 2(a) in Sawford et al. (2005) that g ∼ 2 when β = 0.33 (CK = 2, C0 = 6)
for both couples of parameters (0.2, 0.827) and (1, 0.929).

A comparison similar to the present is made by Reynolds (1999b) using a one-
dimensional and a quasi-one-dimensional model with Gaussian and maximum missing
information (MMI) density functions. Unfortunately, this study uses β = 1 (CK =
C0 = 2). However, he observes an overestimation of g by the quasi-one-dimensional
model. In fact, for the one-dimensional model, g = 1.26 (Gaussian PDF) and g = 0.56
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Figure 10. The model agreement with the Franzese–Cassiani formula (5.24) for three
different values of C0 (2, 5, 15) and the predicted values of g (0.18, 0.45, 1.36).

(MMI PDF); for the quasi-one-dimensional model, g = 13.6 (Gaussian PDF) and
g = 1.0 (MMI PDF).

Finally, with regard to the Richardson constant, it can be said that, generally, the
present model is in better agreement with the literature value than other models.
The same good agreement occurs with the Gaussian well-mixed model by Borgas &
Sawford (1994) called ‘model (4.2a)’ and the moments approximated model by Heppe
(1998).

5.5.2. The consistency with the Franzese–Cassiani formula

An important and surprising result of the present model is the excellent agreement
with the recent statistical theory of turbulent relative dispersion by Franzese &
Cassiani (2007). They theoretically derived the following formula (formula (8.1) in
their paper):

g = (18
√

6− 44)C0. (5.24)

To compare the model with the Franzese–Cassiani formula (5.24), parameter ρ

(5.14) has to be computed for different values of C0 and CK . Formula (5.23) yields

CK = (
√

2C0β)2/3,

where β can be considered a ‘universal constant’ when expressed in terms of the
universal constants C0 and CK (5.23). In this case, β must be fixed for every {C0, CK}
pair and, in particular, from the DNS data analysed, β is equal to (7/4)3/2/(5

√
2) ∼

0.33. Subsequently, taking this ‘universal’ value of β , for every simulation, the values
of CK and ρ are given by

CK =
7

4

(
C0

5

)2/3

, ρ = −4613− 960(C0/5)1/3

651
,

with CK = 7/4 and ρ = −3653/651 when C0 = 5. The agreement with (5.24) is
shown in figure 10 where 〈r2〉 is plotted for three different values of C0 (2, 5, 15) and
compared with the three predictions of g (0.18, 0.45, 1.36).
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6. Discussion and conclusions
It is well known that there is important non-uniqueness in two-particle Markovian

stochastic models of dispersion (Borgas & Sawford 1994). Despite this, a valid
application of the stochastic-model approach for describing Lagrangian statistics in
turbulent flow can be found in Borgas & Yeung (2004). They show that stochastic
models, when properly formulated, are efficient representations of the turbulent
dispersion process. Moreover, the non-Markovian aspect related to the viscous range
can be modelled well (see Heppe 1998).

The present paper is focused on the non-uniqueness problem. Starting from
turbulent flows being rotational, the physical picture of a fluid particle pair as a
couple of material points rotating around their centre of mass is proposed to model
turbulent relative dispersion in the inertial range. Coupling this physical picture with
the well-mixed condition, a way to kinematically construct the acceleration field is
obtained, leading to a constraint for the non-uniqueness problem.

The formulation proposed is based on the particle pair rotation that is represented
with an explicit angular velocity derived from two-particle mechanics. This angular
velocity is an important element for the consistency of the derived stochastic process
with some turbulent-flow characteristics, especially in comparison with previous
formulations. In particular, it is consistent with the following characteristics: (i)
the statistical dependence between the longitudinal and orthogonal components of
the velocity difference vector; (ii) the non-null vorticity field; and (iii) the small-
length-scale limit and the large-fluctuation regime. The first characteristic is a
fundamental aspect of the Navier–Stokes equations that, instead, is not satisfied
by the Kurbanmuradov quasi-one-dimensional assumption closure scheme and by the
non-unique Gaussian models. In the formulation proposed, the above property is due
to the non-null angular velocity, but, notwithstanding this, its effects on the mean
rotation are null and the isotropy is preserved. Furthermore, the consistency with the
Navier–Stokes equations is observed also in respect of a non-null vorticity field. In
fact, it is shown that the non-zero angular velocity of the particle pair preserves a
non-null vorticity field. This also means that every model with a zero angular velocity
is not consistent with a non-null vorticity field. Finally, the small-length-scale limit
and the large-fluctuation regime are analysed and the formulation proposed is better
than the previous ones. In particular, the quasi-one-dimensional-approach models
cannot be reduced to the small-length-scale limit and, moreover, when based on the
quasi-one-dimensional assumption, they cannot be formulated in the large-fluctuation
regime because of the non-factorizable Eulerian density. The non-unique Gaussian
models do not satisfy the large-fluctuation regime.

A simple Markov model is also developed as a merely illustrative application of
the formulation proposed. The viscous range is not modelled to avoid introducing
complexity, physical approximations and free parameters, and to highlight the inertial
range behaviour. Despite its simplicity, in the inertial range, the model is consistent
with more Eulerian statistical moments than previous models in literature and a
good agreement is observed with DNS data both for statistics and probability
density function of particle separation. Moreover, the comparison on the value of the
Richardson constant g with several models clearly shows that the model proposed
performs better than the others and it is at the same level as the Gaussian well-
mixed model by Borgas & Sawford (1994) called ‘model (4.2a)’ and the moments
approximated model by Heppe (1998). In particular, the value of the Richardson
constant g is equal to 0.43, in agreement with the literature value. Finally, the present
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model turns out to be in agreement with the formula to relate g and C0 derived by
Franzese & Cassiani (2007).

Recall that all the good performances of the model are obtained without any
free tunable parameters. This remarkable fact supports the formulation proposed.
However, it must be remarked also that the model parameter ρ (5.14) is determined
using values of the constant factors of some Eulerian statistics (5.15) and (5.16)
computed by the same DNS dataset considered for the comparison. This means that,
in principle, in order to have a consistent comparison with another DNS dataset, the
parameter ρ must be re-computed. In fact, different values of the constant factors of
the Eulerian statistics can occur, expecially for DNS datasets with distinct Reynolds
numbers, and then a different value of the parameter ρ follows. With respect to this
issue, also some standard case studies are analysed to test the model performances
in situations independent of the DNS dataset by Biferale et al. (2005). In these cases,
the Richardson constant of the model ranges from 0.45 to 0.65. In particular, setting
CK = 2.1 and C0 = 6, or in both case studies σ 2

1p = ε = 1 and τL = λ = 1 with
CK = 2 and C0 = 6, the Richardson constant turns out to be 0.55, which is in very
good agreement with the experimental measure g = 0.55±0.05 (Berg et al. 2006) and
the estimation g = 0.55 − 0.57 by Sawford et al. (2008). The model performs very
well also in standard situations and not only when compared with the DNS data by
Biferale et al. (2005). This last result is an independent positive confirmation of the
model and the formulation proposed.
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Appendix A. Kinematics in the rotational case
A.1. Angular momentum and angular velocity

In mechanics, the rotation around a point is the consequence of a non-zero angular
momentum M , which is defined for a particle with unitary mass as (Landau & Lifshitz
1960, p. 19)

M = d × ḋ, (A 1)

where d is the separation between the particle and the point and ḋ = dd/dt . The
angular velocity Θ is defined as (Landau & Lifshitz 1960, p. 106)

Mi = IikΘk, (A 2)

where Iik = d2δik − didk is the inertial momentum tensor (Landau & Lifshitz 1960,
p. 99). Generally, when the particle moves, the modulus and the direction of Θ change.
Moreover, M and Θ usually have different directions, except in the special cases when
the rotation occurs around one of the symmetry axes (Landau & Lifshitz 1960, p. 106).
One of these special cases is that of a solid line. Such a system is called a rotator. The
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characteristic property which distinguishes a rotator from other bodies is that it has
only two, not three, rotational degrees of freedom, corresponding to rotations about
the two axes perpendicular to the solid line: it is clearly meaningless to speak of the
rotation of a straight line about itself (Landau & Lifshitz 1960, p. 101). In this special
case, the inertial momentum tensor Iik becomes a diagonal matrix with Iii = d2 and
Iik = 0 for i �= k, then from (A 2)

M = d2Θ . (A 3)

The combination of (A 1) and (A 3) gives

Θ =
1

d2
(d × ḋ). (A 4)

However, formulae (A 3) and (A 4) hold also in the case of a particle whose
translational motion occur only radially with respect to a point. In fact, it is similar
to the following situations: (a) a sequence of particles along a solid body line rotating
around one of its two extremes and at any instant t only the particle located in d(t)
is considered, or (b) a particle forced to move along a solid line track rotating around
one of its two extremes and at time t the particle is located at distance d(t) from the
fixed extreme. In other words, the positional vector of a particle that can move only
radially along a line in two different instants defines a plane, a rotational angle θ , a
rotational axis perpendicular to the plane, and an angular velocity Θ = dθ/dt aligned
with the rotational axis. This rotational axis is then perpendicular to the positional
vector, i.e. Θ ⊥ d.

A.2. The Lagrangian relative velocity

In the case of relative dispersion of two fluid particles, the centre of mass of the
system can be considered as the origin of a non-inertial reference frame, where
rCM = (r (1) + r (2))/2 and uCM = (u(1) + u(2))/2 are its position and its velocity,
respectively. The three-dimensional separation r = r (1)−r (2) is an axis of this reference
frame. By definition, the centre of mass falls on the line joining the two particles for
all times. Since each particle can move only radially in this frame, it is possible to
apply the previous arguments. The velocity vector of the particles is

u(i) = uCM + V (i),

where V (i) is the i-particle velocity in the non-inertial system. The particles considered
are fluid particles and not material points of a solid body, therefore their translational
motion in the non-inertial frame is non-zero. As a consequence, their motion is the
sum of a translational V (i)

T and a rotational V (i)
R component, i.e. V (i) = V (i)

T +V (i)
R . If the

origin of the non-inertial frame is the centre of mass of the two particles, the particles
can move only radially along r and the translation velocity is V (i)

T = (u(i)
‖ − uCM

‖ )r/r .

The rotational part is V (i)
R = Ω (i) × (r (i) − rCM ), where Ω (i) is the angular velocity.

Finally,

u(i) = uCM +
(
u

(i)
‖ − uCM

‖
) r
r

+ Ω (i) ×
(

r (i) − rCM
)
. (A 5)

From (A 5), the velocity of each particle is

u(1) = uCM +
(
u

(1)
‖ − uCM

‖
) r
r

+ Ω (1) ×
(

r (1) − rCM
)

= uCM +
(
u

(1)
‖ − uCM

‖
) r
r

+ Ω (1) × r
2
, (A 6)
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u(2) = uCM +
(
u

(2)
‖ − uCM

‖
) r
r

+ Ω (2) ×
(

r (2) − rCM
)

= uCM +
(
u

(2)
‖ − uCM

‖
) r
r
−Ω (2) × r

2
. (A 7)

Since r (1) − rCM = r/2 and r (2) − rCM = −r/2 are used, different signs in front of the
rotational component of (A 6) and (A 7) result.

In the centre-of-mass frame, the translational movement of the particles is always
radial along line r , therefore the previous arguments (A 1)–(A 4) can be applied with
d(i) = r (i) − rCM so that d(1) = −d(2) = r/2 and d2 = r2/4. From (A 4), the angular
velocity of each particle is

Ω (i) =
4

r2

[(
r (i) − rCM

)
×

(
u(i) − uCM

)]
. (A 8)

Substituting u(1) − uCM = u/2 and u(2) − uCM = −u/2 in (A 8) gives

Ω (1) = Ω (2) =
4

r2

(
r
2
× u

2

)

=
1

r2
(r × u). (A 9)

Finally, from (A 5)–(A 9), the Lagrangian relative velocity can be written as

u = u(1) − u(2)

=
(
u

(1)
‖ − u

(2)
‖

) r
r

+
(
Ω (1) + Ω (2)

)
× r

2

= u‖
r
r

+
1

r2
(r × u)× r

= u‖
r
r

+ Ω × r, (A 10)

where

Ω =
1

r2
(r × u). (A 11)

Appendix B. Proof of (3.23)
Taking the time derivative of (3.1) gives

A =
du
dt

=

(
A‖ +

u2
⊥
r

)
r
r

+ Ω × u +
u‖

r
u −

u2
‖

r

r
r

+ Ω̇ × r, (B 1)

where, if (3.2) holds,

Ω̇ =
dΩ

dt
=

1

r2

[
(r × A)− 2

u‖

r
(r × u)

]
. (B 2)

It is possible to show for substitution that, when (3.1) and (3.2) hold, a solution of
(3.4) is

A =

(
A‖ +

u2
⊥
r

)
r
r

+ Ω × u. (B 3)

This means that the following formula must be proved

Ω̇ × r +
u‖

r
u −

u2
‖

r

r
r

= 0. (B 4)
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Before starting the proof of (B 4), the following formulae are reminded

p× q = −q × p, p× (q × p) = q ( p · p)− p (q · p),

where p and q are two generic vectors, u2 = u · u = u2
‖ + u2

⊥, and

Ω × u =
1

r2
(r × u)× u = − 1

r2
u × (r × u)

= − 1

r2
[r (u · u)− u (r · u)]

= −u2

r

r
r

+
u‖

r
u.

Hence, from (B 2)

Ω̇ × r =
1

r2

[
(r × A)× r − 2

u‖

r
(r × u)× r

]

=
1

r2

[
r × (A× r)− 2

u‖

r
r × (u × r)

]

=
1

r2

[
A r2 − r (A · r)− 2

u‖

r
u r2 + 2

u‖

r
r (u · r)

]

= A− A‖
r
r
− 2

u‖

r
u + 2

u2
‖

r

r
r

= A− A‖
r
r
− 2

u‖

r
u + 2

u2

r

r
r
− 2

u2
⊥
r

r
r

= A−
(

A‖ +
u2
⊥
r

)
r
r
−

(
−u2

r

r
r

+
u‖

r
u

)
−

u‖

r
u +

u2

r

r
r
− u2

⊥
r

r
r

= A−
(

A‖
r
r

+
u2
⊥
r

)
r
r
−Ω × u −

u‖

r
u +

u2
‖

r

r
r

= −
u‖

r
u +

u2
‖

r

r
r
. (B 5)

Appendix C. Model performances in standard case studies
In order to analyse the model performances in situations independent of the DNS

dataset by Biferale et al. (2005), the Richardson constant is computed for three
standard case studies: (i) the case when the universal constant CK assumes the
literature value 2.1 (Sreenivasan 1995); (ii) when the values of the parameter pair
(σ 2

1p, ε), which are the one-point velocity variance and the turbulent kinetic energy
dissipation, are taken equal to 1; and (iii) when the values of the pair (τL, λ), which
are the Tennekes Lagrangian time scale (4.18) and the Eulerian length scale (5.22),
are taken equal to 1.

The model is dependent on the parameter ρ (5.14), which is a function of CK , C0,
m4,0, m2,2 and m3,1 (5.15) and (5.16). This suggests that different values of the constant
factors of the Eulerian statistics mi,j give a different determination of ρ. However, for
the purpose of highlighting the dependence of the parameter ρ on CK and C0, the
values of m4,0, m2,2 and m3,1 given in (5.16) are preserved, then from (5.14) follows:

ρ = −659

93
+

16

31

C0

CK

. (C 1)
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Figure 11. Plots of the variance of the particle separation 〈r2〉 with CK = 2.1 and C0 = 5
(continuos line), C0 = 6 (dotted line) and C0 = 7 (dash-dotted line). The dotted straight lines
are the fits with the corresponding Richardson constant: g = 0.45, 0.55 and 0.65.

The numerical simulations in the first case study are performed with 2000 particle
pairs and the same conditions as in § 5.4.1. Moreover, they can be performed in two
ways: first, with ρ determined as in (C 1) and second, with ρ = −3653/651 as in the
rest of this paper. The plots of 〈r2〉 for ρ determined as in (C 1), which are very similar
to the case ρ = −3653/651, are shown in figure 11 for C0 = 5, 6 and 7, respectively.
The estimations of the Richardson constant turn out to be g = 0.45, 0.55 and 0.65,
for the three values of C0 = 5, 6 and 7, respectively.

For the other two case studies, the simulations are performed with 2000 particle
pairs setting time step dt = 10−5, the initial separation r0 = 10−5λ, CK = 2, C0 = 6
and ρ = −3653/651. When σ 2

1p = ε = 1, the Tennekes Lagrangian time scale (4.18)
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Figure 12. Plots of the variance of the particle separation 〈r2〉 in the case studies σ 2
1p = ε = 1

(continuos line) and τL = λ = 1 (dotted line) with CK = 2 and C0 = 6. The dotted straight
line is the fit with the Richardson constant: g = 0.55.

and the Eulerian length scale λ (5.22) are determined as

τL =
2 σ 2

1p

C0 ε
= 1

3
, λ =

1

ε

(
2 σ 2

1p

CK

)3/2

= 1,

and when τL = λ = 1 the parameters σ 2
1p and ε are determined as

σ 2
1p = 1

9
, ε = 1

27
.

The results of these second and third case studies are shown in figure 12 and in both
cases the Richardson constant turns out to be g = 0.55. These results are in very good
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agreement with the experimental value of the Richardson constant g = 0.55 ± 0.05
(Berg et al. 2006) and the large-Reynolds-number limit estimation g = 0.55− 0.57 by
Sawford et al. (2008).
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